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Cubyl trifluoromethanesulphonate solvolyses at a convenient rate and with a high sensitivity to solvent ionizing
power; substituents on C-4 retard the solvolysis, modestly for methyl and enormously for methoxycarbonyl or

halogen.

Due to the unfavourable geometric constraints involved in
forming a carbocation at the corner of a cube, the solvolysis of
cubyl derivatives via an Syl mechanism was long thought to be
highly unlikely. The present manuscript provides a detailed
quantitative study of the remarkably high reactivity of cubyl
trifluoromethanesulphonate.! Both solvent effects (establish-
ing an Syl reaction) and substituent effects (strongly favouring
a powerful through bond and/or space effect, with little charge
relayed to C-4 by skeletal adjustments) have been studied.
Specific rates of acid production in the solvolysis, without
rearrangement,! of cubyl trifluoromethanesulphonate and a
series of 4-substituted derivatives, (1) (X = H, Me, CO,Me,
Cl, Br, I), have been determined in 1,1,1,3,3,3-hexafluoro-
propan-2-ol (HFIP) (Tables 1 and 2). For (1) (X = H, Me),
the effect of solvent variation was studied and for (1) (X = H)

0S0,CF,

(1

Table 1. Specific rates of solvolysis (k/s~!) of cubyl trifluoro-
methanesulphonate in solvents of widely varying ionizing power.

Solvent T/°C 106k b.c log (k/k())d Yorst
HFIP 0.0 589 +19

10.9 2240 +50

25.0f 10760 2.73 2.51=
TFE 25.0 131 + 5 0.81 0.968
80% EtOH 25.0 202 £ 05 0.00 0.00
60T-40ER 25.0 593 + 0.16 —0.53 -0.31i
40T-60ER 25.0 1.42 = 0.06 -1.15 —1.02i
MeOH 25.0 1.01 + 0.03 -1.30_ . -0.79
EtOH 25.0t 0.224 -1.96 —1.66

42.4 3.04 = 0.04

62.6 441 = 04

a Substrate concentration ca. 0.0025 m; mixed solvents on volume-
volume basis. ® With associated standard deviation. ¢ For 4-methyl-
cubyl trifluoromethanesulphonate values of: 398(+£10) x 10-6s-1 at
0.0°C and 1670(£50) x 10-8s-! at 10.9°C in HFIP, 110(%2) x
10-6s-! at 25.0°C in TFE, and 10.3(0.5) x 10-6s-! at 25.0°C in
80% EtOH. The extrapolated value for solvolysis in HFIP at 25.0°C is
9050 x 10-6s~1. d Specific rate in 80% ethanol designated as k.
¢ Unless otherwise stated, values are at 25.0 °C (ref. 4). { Extrapolated
value, using the Arrhenius equation. & Determined for a solvent
containing 3% (by weight) water, ® TFE(T)-ethanol(E) mixtures.
i Values determined at —20°C (ref. 3).

analysed in terms of the Grunwald-Winstein equation,2 using
Yors (Tf = trifluoromethylsulphonyl) values determined from
the solvolysis of 2-admantyl trifluoromethanesulphonate3-
(Table 1).

The m value of slightly greater than unity (1.12 + 0.05 at
25.0°C, r 0.996, n 7) suggests a transition state slightly later
than that for the 2-adamantyl trifluoromethanesulphonate
solvolysis. At 25.0°C, the cubyl ester reacts 840 times slower
in 80% ethanol than the 2-adamantyl ester,* and therefore>
about 108 times slower than the bridgehead substituted
1-adamanty! ester. Indeed, cubyl derivatives would be good
substrates for establishing Y scales for excellent leaving
groups. Another factor which could lead to an m value above
unity would be an increase in ion-pair return relative to the
standard compound.¢ Indeed, it has been suggested that the
rate determining step in the solvolysis of adamantyl deriva-
tives involves the solvent separation of the contact ion-pair,’
and, further, it has been suggested that ion-pair return might
be unusually important in the unimolecular solvolysis of
trifluoromethanesulphonate esters.4

Correlation against Yo values®-® (m 0.87 + 0.07 at 25.0°C,
r 0.984, n 7) shows curvature with deviation of the 80%
ethanol point and the success of the Yor¢ correlation supports
the use of separate ionizing power scales for each leaving
group. 10

Very small retardations are observed on introduction of a
methyl group at C-4; at 25.0°C, in both HFIP and 2,2,2-
trifluoroethanol (TFE), retardation by a factor of 1.2 is
observed and in 80% ethanol this ratio increases to 2.0. That
care must be taken in interpreting such small ratios is

Table 2. Specific rates of solvolysis2 (k) of 4-substituted cubyl
trifluoromethanesulphonates in HPIP at various temperatures.

106 k/s—1
4-Substituent
62.6°C 75.0°C 83.7°C opb
CO,Mec 4.15 12.5 31.3d 0.34
Iet 6.47 18.8 32.3 0.39
Br 1.10 2.97 6.15 0.45
Cl 0.53 1.29 2.61 0.47

2 Sealed tube technique with ca. 0.0035 M substrate; unless otherwise
indicated, standard deviations within 4% of reported values.
b Charton’s inductive constants (ref. 12). ¢ Also, a value of 6.98 *
(0.20) x 10751 at 50.2 °C. d Standard deviation of 2.0 x 10-6s-1,
¢ Also, values of 2.44 + (0.06) X 10-¢s—1at50.2°Cand 11.1 (£0.5) X
10-¢s5~1 at 68.0°C. f For the five temperatures studied, AH* and AS*
values at 75.0°C (with standard errors) of 72.2 + 2.3kJmol-! and
—129 £ 7JK~!mol-! can be calculated, leading to an extrapolated
specific rate at 10.9°C of 5.2 x 10-8s~1,
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emphasized by the calculation that for solvolyses in HFIP the
ratio would fall to below unity above 48°C. Similar small
retardations of the solvolysis of bridgehead derivatives by
remote methyl groups have been observed previously. !t

Introduction of a series of four electron-withdrawing
substituents at C-4 causes an enormous deceleration, le4ding
to specific rates which are remarkably insensitive to the
identity of the substituent (Table 2). Extrapolating the data in
HFIP for (1) (X = I) to 10.9 °C shows that it reacts 43 000 times
slower than (1) (X = H). The question arises as to whether
‘non-classical’ character leads to relay of the developing
charge to the 4-position.1b< The Charton inductive constants!2
(Table 2) would suggest similar retardations for the four
electron-withdrawing substituents and a modest effect of a
methyl group (o7 —0.05), as is observed. If appreciable
positive charge was being relayed to C-4 then one would
expect Brown’s o,* constants!3 to apply, at least semi-
quantitatively. On this basis, a relatively large acceleration for
introduction of methyl, a more modest retardation for a
halogen, and a severe retardation for a methoxycarbonyl
substituent would be predicted, contrary to observation. We
believe the evidence to be firmly in favour of an essentially
classical incipient cubyl cation.
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