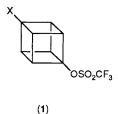
Solvolysis of Cubyl Trifluoromethanesulphonate: Solvent and Remote Substituent Effects

Dennis N. Kevill,*a Malcolm J. D'Souza, Robert M. Moriarty,*b Sudersan M. Tuladhar, Raju Penmasta, and Alok K. Awasthi^b


^a Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115, USA

^b Department of Chemistry, University of Illinois at Chicago, Box 4348, Chicago, Illinois 60680, USA

Cubyl trifluoromethanesulphonate solvolyses at a convenient rate and with a high sensitivity to solvent ionizing power; substituents on C-4 retard the solvolysis, modestly for methyl and enormously for methoxycarbonyl or halogen.

Due to the unfavourable geometric constraints involved in forming a carbocation at the corner of a cube, the solvolysis of cubyl derivatives *via* an S_N l mechanism was long thought to be highly unlikely. The present manuscript provides a detailed quantitative study of the remarkably high reactivity of cubyl trifluoromethanesulphonate.¹ Both solvent effects (establishing an S_N l reaction) and substituent effects (strongly favouring a powerful through bond and/or space effect, with little charge relayed to C-4 by skeletal adjustments) have been studied.

Specific rates of acid production in the solvolysis, without rearrangement,¹ of cubyl trifluoromethanesulphonate and a series of 4-substituted derivatives, (1) (X = H, Me, CO₂Me, Cl, Br, I), have been determined in 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) (Tables 1 and 2). For (1) (X = H, Me), the effect of solvent variation was studied and for (1) (X = H)

Table 1. Specific rates of solvolysis (k/s^{-1}) of cubyl trifluoromethanesulphonate in solvents of widely varying ionizing power.

Solvent ^a	T/°C	10 ⁶ k ^{b,c}	$\log{(k/k_0)^d}$	$Y_{\rm OTf}^{e}$
HFIP	0.0	589 ± 19		
	10.9	2240 \pm 50		
	25.0f	10 760	2.73	2.51g
TFE	25.0	131 ± 5	0.81	0.96 ^g
80% EtOH	25.0	20.2 ± 0.5	0.00	0.00
60T-40E ^h	25.0	5.93 ± 0.16	-0.53	-0.31^{i}
40T60E ^h	25.0	1.42 ± 0.06	-1.15	-1.02^{i}
MeOH	25.0	1.01 ± 0.03	-1.30	-0.79
EtOH	25.0f	0.224	-1.96	-1.66
	42.4	3.04 ± 0.04		
	62.6	44.1 ± 0.4		

^a Substrate concentration *ca.* 0.0025 M; mixed solvents on volumevolume basis. ^b With associated standard deviation. ^c For 4-methylcubyl trifluoromethanesulphonate values of: $398(\pm 10) \times 10^{-6} \text{s}^{-1}$ at 0.0°C and $1670(\pm 50) \times 10^{-6} \text{s}^{-1}$ at 10.9°C in HFIP, $110(\pm 2) \times 10^{-6} \text{s}^{-1}$ at 25.0°C in 80% EtOH. The extrapolated value for solvolysis in HFIP at 25.0°C is $9050 \times 10^{-6} \text{s}^{-1}$. ^d Specific rate in 80% ethanol designated as k_0 . ^e Unless otherwise stated, values are at 25.0°C (ref. 4). ^f Extrapolated value, using the Arrhenius equation. ^g Determined for a solvent containing 3% (by weight) water. ^h TFE(T)-ethanol(E) mixtures. ⁱ Values determined at -20°C (ref. 3). analysed in terms of the Grunwald–Winstein equation,² using Y_{OTf} (Tf = trifluoromethylsulphonyl) values determined from the solvolysis of 2-admantyl trifluoromethanesulphonate^{3,4} (Table 1).

The *m* value of slightly greater than unity $(1.12 \pm 0.05 \text{ at})$ 25.0 °C, r 0.996, n 7) suggests a transition state slightly later than that for the 2-adamantyl trifluoromethanesulphonate solvolysis. At 25.0 °C, the cubyl ester reacts 840 times slower in 80% ethanol than the 2-adamantyl ester,⁴ and therefore⁵ about 108 times slower than the bridgehead substituted 1-adamantyl ester. Indeed, cubyl derivatives would be good substrates for establishing Y scales for excellent leaving groups. Another factor which could lead to an *m* value above unity would be an increase in ion-pair return relative to the standard compound.⁶ Indeed, it has been suggested that the rate determining step in the solvolysis of adamantyl derivatives involves the solvent separation of the contact ion-pair,⁷ and, further, it has been suggested that ion-pair return might be unusually important in the unimolecular solvolysis of trifluoromethanesulphonate esters.4

Correlation against Y_{OTs} values^{8.9} ($m 0.87 \pm 0.07$ at 25.0 °C, r 0.984, n 7) shows curvature with deviation of the 80% ethanol point and the success of the Y_{OTf} correlation supports the use of separate ionizing power scales for each leaving group.¹⁰

Very small retardations are observed on introduction of a methyl group at C-4; at 25.0 °C, in both HFIP and 2,2,2-trifluoroethanol (TFE), retardation by a factor of 1.2 is observed and in 80% ethanol this ratio increases to 2.0. That care must be taken in interpreting such small ratios is

Table 2. Specific rates of solvolysis^a (k) of 4-substituted cubyl trifluoromethanesulphonates in HPIP at various temperatures.

4-Substituent				
	62.6°C	75.0 °C	83.7°C	$\sigma_I{}^b$
CO ₂ Me ^c	4.15	12.5	31.3d	0.34
Ie,f	6.47	18.8	32.3	0.39
Br	1.10	2.97	6.15	0.45
Cl	0.53	1.29	2.61	0.47

^a Sealed tube technique with *ca*. 0.0035 M substrate; unless otherwise indicated, standard deviations within 4% of reported values. ^b Charton's inductive constants (ref. 12). ^c Also, a value of 6.98 ± (0.20) × 10⁻⁷ s⁻¹ at 50.2 °C. ^d Standard deviation of ± 2.0 × 10⁻⁶ s⁻¹. ^e Also, values of 2.44 ± (0.06) × 10⁻⁶ s⁻¹ at 50.2 °C and 11.1 (±0.5) × 10⁻⁶ s⁻¹ at 68.0 °C. ^f For the five temperatures studied, ΔH^{\ddagger} and ΔS^{\ddagger} values at 75.0 °C (with standard errors) of 72.2 ± 2.3 kJ mol⁻¹ and -129 ± 7 J K⁻¹ mol⁻¹ can be calculated, leading to an extrapolated specific rate at 10.9 °C of 5.2 × 10⁻⁸ s⁻¹. emphasized by the calculation that for solvolyses in HFIP the ratio would fall to below unity above 48 °C. Similar small retardations of the solvolysis of bridgehead derivatives by remote methyl groups have been observed previously.¹¹

Introduction of a series of four electron-withdrawing substituents at C-4 causes an enormous deceleration, leading to specific rates which are remarkably insensitive to the identity of the substituent (Table 2). Extrapolating the data in HFIP for (1) (X = I) to 10.9 °C shows that it reacts 43 000 times slower than (1) (X = H). The question arises as to whether 'non-classical' character leads to relay of the developing charge to the 4-position.^{1b,c} The Charton inductive constants¹² (Table 2) would suggest similar retardations for the four electron-withdrawing substituents and a modest effect of a methyl group (σ_1 –0.05), as is observed. If appreciable positive charge was being relayed to C-4 then one would expect Brown's σ_p^+ constants¹³ to apply, at least semiquantitatively. On this basis, a relatively large acceleration for introduction of methyl, a more modest retardation for a halogen, and a severe retardation for a methoxycarbonyl substituent would be predicted, contrary to observation. We believe the evidence to be firmly in favour of an essentially classical incipient cubyl cation.

Received, 4th December 1989; Com. 9/05163E

References

- (a) R. M. Moriarty, S. M. Tuladhar, R. Penmasta, and A. K. Awasthi, 198th ACS National Meeting, Miami Beach, Florida, September 10–15, 1989, Abstract of Papers ORGN 18, J. Am. Chem. Soc., accepted; (b) P. E. Eaton, C.-X. Yang, and Y. Xiong, *ibid.*, accepted; (c) D. A. Hrovat and W. T. Borden, *ibid.*, accepted.
- 2 E. Grunwald and S. Winstein, J. Am. Chem. Soc., 1948, 70, 846.
- 3 D. N. Kevill and S. W. Anderson, J. Org. Chem., 1985, 50, 3330.
- 4 T. W. Bentley and K. Roberts, J. Org. Chem., 1985, 50, 4821.
- 5 R. C. Fort, Jr., and P. v. R. Schleyer, *Chem. Rev.*, 1964, 64, 277; D. N. Kevill, K. C. Kolwyck, D. M. Shold, and C.-B. Kim, *J. Am. Chem. Soc.*, 1973, 95, 6022.
- 6 D. N. Kevill, K. C. Kolwyck, and F. L. Weitl, J. Am. Chem. Soc., 1970, 92, 7300.
- 7 V. J. Shiner, Jr., and R. D. Fisher, J. Am. Chem. Soc., 1971, 93, 2553.
- 8 F. L. Schadt, T. W. Bentley, and P. v. R. Schleyer, J. Am. Chem. Soc., 1976, 98, 7667.
- 9 D. N. Kevill and D. C. Hawkinson, J. Org. Chem., 1989, 54, 154.
- 10 T. W. Bentley, G. E. Carter, and K. Roberts, J. Org. Chem., 1984, 49, 5183.
- 11 R. C. Fort, Jr., in 'Carbonium Ions,' eds. G. A. Olah and P. v. R. Schleyer, Wiley-Interscience, New York, 1972, vol. 4, pp. 1797—1799.
- 12 M. Charton, J. Org. Chem., 1964, 29, 1222.
- 13 For a discussion and listing of values see: J. E. Leffler and E. Grunwald, 'Rates and Equilibria of Organic Reactions,' Wiley, New York, 1963, pp. 203-210.